Abstract

Osteoporosis is a skeletal disease characterized with poor bone quality and low bone mineral density. The pathogenesis of osteoporosis is the imbalance of bone resorption and bone formation. Two strategies can be employed to cure osteoporosis. One is to inhibit bone resorption and the other is to stimulate bone formation. Currently, therapeutic drugs approved by FDA are mainly antiresorptive agents. Till now, there is only one bone anabolic agent approved. Obviously, more efforts should be poured into the development of bone anabolic agents.

Sclerostin is a key negative regulator of osteoblast Wnt signaling making it a promising therapeutic target for bone anabolic therapy. Anti-sclerostin humanized monoclonal antibody romosozumab, which could effectively promote bone formation, has been accepted by the FDA for the review of biologic license application in 2017. However, there are several concerns about the humanized anti-sclerostin antibody, including immunogenicity, high cost of production and relative low stability.

Nucleic acid aptamers are short single stranded oligonucleotides. They can bind to their targets with similar high affinity as antibodies. Moreover, aptamers have some superior advantages compared to antibodies, such as no immunogenicity, easily synthesized, and high stability. Aptamers against sclerostin could be a promising alternative to antibodies in terms of promotion of bone formation and reversal of osteoporosis.

In this thesis, 20 rounds of SELEX were performed to select aptamers with high binding affinity and specificity to sclerostin. The inhibition potency of aptamer candidates to the antagonistic effect of sclerostin on Wnt signaling was also evaluated. Low \(K_D \) and \(EC_{50} \) values of aptamer candidates against sclerostin implied a great potential of sclerostin aptamer being the novel agents to promote bone formation. The study establishes the foundation for the next stage of preclinical studies and it will benefit the development of novel bone anabolic agents to reverse osteoporosis.

Key words: osteoporosis; bone anabolic agents; sclerostin; Wnt signaling; romosozumab; aptamer; affinity; specificity; inhibition potency.
Contents

Declaration... i
Abstract... ii
Acknowledgements .. iii
Contents ... v
List of Abbreviations ... ix
List of Figures... ix
List of Tables .. x

Chapter 1 Background and introduction ... 1
 1.1 Overview of osteoporosis ... 2
 1.1.1 Epidemiology of osteoporosis.. 2
 1.1.2 Regulation of bone metabolism ... 3
 1.1.3 Therapeutic drugs for the treatment of osteoporosis 5
 1.1.3.1 Antiresorptive agents ... 6
 1.1.3.2 Bone anabolic agents ... 9
 1.1.4 Physiologic roles of sclerostin in bone formation 11
 1.1.5 Antibodies against sclerostin for reversing osteoporosis 13
 1.1.5.1 Promising bone anabolic effect of anti-sclerostin antibodies 13
 1.1.5.2 Limitations of antibody drugs .. 14
 1.2 Overview of nucleic acid aptamers ... 15
 1.2.1 Development of nucleic acid aptamers against sclerostin 15
 1.2.2 Therapeutic aptamers in clinical studies ... 16
 1.2.3 Systematic Evolution of Ligand by Exponential Enrichment (SELEX) .. 17
 1.3 Research purpose and workflow ... 19
Chapter 2 Identification of nucleic acid aptamers against sclerostin21

2.1 Aims and overview ..22
2.2 Experimental section..23
 2.2.1 Experimental materials ...23
 2.2.2 Preparation of buffers and solutions ..24
 2.2.3 Procedures in SELEX ...25
 2.2.3.1 Immobilization of sclerostin on NTA beads25
 2.2.3.2 Incubation of ssDNA library and beads-sclerostin complex25
 2.2.3.3 Amplification of the bound ssDNA to beads-sclerostin complex ..26
 2.2.3.4 Preparation of single strand DNA ..27
 2.2.4 Enzyme linked oligonucleotide assay (ELONA)29
2.3 Results and discussions ..32
 2.3.1 Identification of optimal PCR cycle number32
 2.3.2 Identification of aptamers against sclerostin32
 2.3.3 Enrichment of ssDNA with high binding affinity33
2.4 Summary of chapter 2 ...34

Chapter 3 Characterization of selected ssDNA aptamers against sclerostin .36

3.1 Aims and overview ..37
3.2 Experimental section..37
 3.2.1 Experimental materials ...37
 3.2.2 Buffers and solutions ...37
 3.2.3 Assessment of the binding specificity ..37
 3.2.4 Assessment of the binding affinity ..38
3.3 Results and discussions ..39
 3.3.1 Binding specificity of aptamer candidates against sclerostin39
 3.3.2 Binding affinity of aptamer candidates against sclerostin42
 3.3.3 Predicted secondary structures of sequenced aptamers44
Chapter 4 Evaluation of inhibition potency of selected ssDNA to sclerostin in cell level

4.1 Aims and overview ...48
4.2 Experimental section ...48
 4.2.1 Experimental materials ..48
 4.2.2 Preparation of competent Cells ...49
 4.2.2.1 Preparation of solutions ..49
 4.2.2.2 Protocol of competent cell preparation49
 4.2.3 Construction of plasmid containing sclerostin50
 4.2.3 Cell culture and transfection of plasmid53
 4.2.4 Assessment of inhibition potency of aptamers to sclerostin53
4.3 Results and discussions ..56
4.4 Summary of Chapter 4 ..59

Chapter 5 Conclusions and prospective ..60

References ..63

Curriculum Vitae ..73