Abstract

This thesis is divided into three sections. The first section of the thesis includes the synthesis and characterization of a catechol-containing [2]pseudorotaxane which established a model for pseudorotaxane formation prepared through slippage method. The pseudorotaxane formation is performed in different solvents at elevated temperature in a period of time and the progress of pseudorotaxane formations were monitored with 1H NMR spectroscopy. The [2]pseudorotaxane had been successfully synthesized in acetonitrile (MeCN) at 60 °C for 5 d with 29% yield.

The second section of the thesis demonstrates the potential of the [1]pseudorotaxane to work as a nanovalve. The opening of valve had been investigated and quantified in the presence of external stimuli such as heat, ultrasound, pH and alternating magnetic field (AMF). Furthermore, a novel core-satellite Fe$_3$O$_4$ nanocomposite had been prepared for AMF responsive controlled drug released system. The cytotoxicity of the core-satellite Fe$_3$O$_4$ nanocomposite had also been investigated and quantified in human gingival epithelial cells and
human epithelial cell line, FaDu, from a squamous cell carcinoma of the hypopharynx. The core-satellite Fe$_3$O$_4$ nanocomposite showed non-cytotoxicity at concentration lower than 200 μg/mL and 100 μg/mL towards HGEPs and FaDu respectively.

The third section of the thesis illustrates the synthesis of a novel [1]pseudorotaxane from a signal compound which consists of a macrocycle and a coordination site through a slippage approach. The formation of mechanically interlocked molecules restricted the twisted intramolecular charge transfer (TICT) quenching process and an enhancement of fluorescence intensity was observed. With a potential to act as a fluorescent probe, the fluorescence and fluorescence-quenching nature of the [1]pseudorotaxane had been investigated and quantified in the presence of external stimuli such as base, acid and salt. Furthermore, a series of cations and anions had been screened. The results suggested that the [1]pseudorotaxane was a highly selective phosphate ion sensor and working with a linear operating mode.
Content

Declaration i
Abstract ii
Acknowledgments iv
Content v

|Abbreviations and Acronyms| viii |
|Table of figures| x |

Chapter 1 - Introduction

1.1 Stimuli responsive materials 1
1.2 Rotaxane based controlled drug release system 8
1.3 Rotaxane based chemosensors 12
1.4 Aim of project 14
1.5 Reference 15

2.1 Background 21
2.2 Synthesis of model compound 17-H·PF₆ 22
2.3 Characterization of model compound 17-H·PF₆ 22
2.5 Synthesis and Characterization of 17-H·PF₆⊂DB24C8 28
2.6 Conclusion 30
2.7 General information 31
2.8 Experimental section 32
2.9 Reference 36

Chapter 3 – Thermo-responsive Controlled Drug Delivery System Based on Pseudorotaxane Capped Mesoporous Iron Oxide Nanoparticles

3.1 Background 37
3.2 Synthesis and characterization of precursors 19 & 20 41
3.2.1 Synthesis of precursors 19 & 20 41

3.2.2 Characterization of precursors 19 & 20 42
 3.2.2.1 NMR spectroscopy 42
 3.2.2.2 Mass spectrometry 44
 3.2.2.3 IR spectroscopy 45

3.3 Synthesis and characterization of meso-Fe₃O₄@19·20 NPs 47
 3.3.1 Synthesis of meso-Fe₃O₄@19·20 NPs 47
 3.3.2 Characterization of meso-Fe₃O₄@19·20 NPs 49
 3.3.2.1 Transmission electron microscopy 49
 3.3.2.2 IR spectroscopy 51
 3.3.2.3 Thermogravimetric analysis 52
 3.3.2.4 X-ray diffraction analysis 54
 3.3.2.5 X-ray photoelectron spectroscopy 55

3.3.3 Drug loading process 56

3.3.4 Drug release profile 58
 3.3.4.1 Release of drug triggered at 55 °C 58
 3.3.4.2 Release of drug triggered at 43 °C 59
 3.3.4.3 Release of drug triggered at various pH 61

3.4 Synthesis and characterization of USPION@23 NPs 63
 3.4.1 Synthesis of compound 23 63
 3.4.2 Characterization of compound 23 64
 3.4.2.1 NMR spectroscopy 64
 3.4.2.2 Mass spectrometry 65
 3.4.3 Synthesis of USPION@23 NPs 65
 3.4.4 Characterization of USPION@23 NPs 66
 3.4.4.1 Transmission electron microscopy 66
 3.4.4.2 IR spectroscopy 67
 3.4.4.3 X-ray photoelectron spectroscopy 68

3.5 Preparation of core-satellite Fe₃O₄ nanocomposite 68

3.6 Alternating magnetic field (AMF) as an external stimulus 72
 3.6.1 Temperature increment under the influence of AMF 72
 3.6.2 Release of drug triggered by AMF 73
3.7 Cytotoxicity of core-satellite Fe₃O₄ nanocomposites 74
3.8 Conclusion 75
3.9 General information 76
3.10 Experimental section 78
3.11 Reference 89

Chapter 4 – Novel Chemosensor for Phosphate Ion Based on
[1]Pseudorotaxane Prepared by Slippage Approach

4.1 Background 93
4.2 Synthesis of [1]pseudorotaxane 25-H·PF₆ 94
4.3 Characterization of [1]pseudorotaxane 25-H·PF₆ 96
 4.3.1 ¹H NMR spectroscopy 96
 4.3.2 ¹³C NMR spectroscopy 98
 4.3.3 Mass spectrometry 98
 4.3.4 UV/Visible absorption and fluorescence spectroscopies 99
4.4 Effect of external stimuli 102
 4.4.1 Addition of base 102
 4.4.2 Addition of salt 104
4.5 Ion sensing 105
 4.5.1 Metal ion sensing 105
 4.5.2 Inorganic anion sensing 107
4.6 Conclusion 109
4.7 General information 110
4.8 Experimental section 111
4.9 Reference 122

Appendix
List of spectra