Abstract

The development of facile and reliable methods to image and detect important biomolecules has drawn considerable attention owing to their potential applications in clinical, bioanalytical and forensic analysis. One-photon microscopy (OPM) has traditionally been used in cell biology research. However, probes based on OPM are associated with shortcomings including photobleaching, cell damage, and intracellular autofluorescence interference. Many researchers are seeking better tools to overcome these obstacles. Two-photon microscopy (TPM) is a convenient and powerful tool to explore the intracellular environment and provides the opportunity to overcome the abovementioned obstacles. Probes based on TPM have become important for bioimaging and sensing because of their low photodamage, reduced fluorescence interference, and better tissue penetration depth. With the development of fluorescence molecules in recent decades, a wide range of organic fluorescence probes based on TPM has been rapidly developed and used in biomedicine and bioimaging. Cyanine dye, one of the classic synthetic dyes, continues to be used in many fields, especially in bio-related applications, owing to its ability to interact with biomolecules through non-covalent and electrostatic bonds. Based on cyanine models, we designed a series of structural modifications of cyanine fluorophores used as two-photon (TP) probes to detect and image the intracellular environment in which new cyanine compounds, namely SLSO₃, SLCOOH-Pr, F-SLOH, SLOH, Me-SLM, SLE, SAM, SAOH, SLG, F-SPG, SLOH-Pr, SLAD, F-SLAD, Me-SLG, SLNA, SLAD-Pr, SLCOOH, SLAce, SLM, SPC, SIOH, PSIOH, DMA-SLOH, DBA-SLOH, DPA-SLM, GBPM, HBBM, HBLM, SBM, SIBM, SIM, PLOH, and PTM, was successfully synthesized. All of these newly designed compounds were characterized with ¹H
NMR, 13C NMR, and HRMS and found to show good agreement with the desired structures. To our surprise, some of the novel cyanine molecules were also able to detect and image amyloid-β (Aβ) peptide species and showed excellent biological properties including neuroprotective effects against the cytotoxicity induced by different forms of Aβ species, blood–brain barrier permeability, and high in vivo stability.

The photophysical and biological properties of these newly synthesized compounds included optical properties such as UV-vis absorption, emission, fluorescence quantum yield in different solvents, dissociation constant determined by fluorescence titration, and circular dichroism spectroscopy, cytotoxicity assay, neuroprotection, and inhibition of Aβ aggregation were investigated.
SBM

SIBM

SIM

SIOH

PSIOH

PLOH

DPA-SLM

R = (CH₂)₂O(CH₂)₂OCH₃
Table of Contents

Declaration ... i
Abstract .. ii
Acknowledgements .. vi
List of Figures ... xi
List of Tables .. xxii
List of Schemes ... xxiii
List of Abbreviations and Symbols ... xxiv

Chapter One Multifunctional Compounds for Bioimaging with Two-Photon Microscopy and their Application in Amyloid-β Imaging and Aggregation Inhibition 1

1.1 Two-Photon Probes for Bioimaging Applications 1
 1.1.1 Introduction .. 1
 1.1.2 Principles of One-photon and Two-photon Microscopy 2
 1.1.3 Model Studies and Design of Two-photon Probes 4
 1.1.4 Two-Photon Probes for Subcellular Organelles 7
 1.1.5 Two-Photon Probes for Metal Ions ... 18
 1.1.6 Two-Photon Probes for Hydrogen Sulfide, ROS and pH 22

1.2 Application of Compounds in Amyloid-β ... 26
 1.2.1 Introduction .. 26
 1.2.2 Amyloid-β Processing ... 28
 1.2.3 Amyloid-β Aggregation .. 28
 1.2.4 Amyloid-β Toxicity .. 31
 1.2.5 Amyloid-β Detection .. 33
 1.2.6 Amyloid-β Aggregation Inhibition ... 37
Chapter Two Multifunctional Fluorophores for Bioimaging via Two Photon Microscopy (TPM) ..56

2.1 Introduction ..56

2.2 Cellular Reactive Oxygen Species (ROS) Detection ...57
 2.2.1 Synthesis ...58
 2.2.2 Results and Discussion ...59
 2.2.3 Conclusion ..70

2.3 Cellular Acidic Environment Detection ..70
 2.3.1 Synthesis ..71
 2.3.2 Results and Discussion ...72
 2.3.3 Conclusion ..84

2.4 Experimental ..84

2.5 References ..89

Chapter Three NIR Probes for Imaging of β-Amyloid and Inhibition of β-Amyloid Aggregation ..93

3.1 Introduction ..93

3.2 Synthesis ...95

3.3 Results and Discussion ..97
 3.3.1 Photophysical Properties ..97
 3.3.2 Fluorescence of NIR Probe toward Aβ Species ...100
 3.3.3 Binding Studies of NIR Probes to Aβ Species ..102
 3.3.4 Selectivity in Serum of DMA-SLOH, DBA-SLOH and DPA-SLM106
 3.3.5 Stability in Bovine Serum of DMA-SLOH, DBA-SLOH and
CHAPTER FOUR Investigation and Applications of Cyanine Fluorophores for β-Amyloid Imaging and Aggregation Inhibition

4.1 Introduction .. 128
4.2 Synthesis .. 131
4.3 Results and Discussion .. 136
 4.3.1 Photophysical Properties ... 136
 4.3.2 Binding Studies of the Cyanine Fluorophores to Aβ Species....................... 139
 4.3.3 Studies of the Cyanine Dyes for Blood-Brain Barrier (BBB) Permeability .. 142
 4.3.4 Cytotoxicity of the Cyanine Dyes ... 144
 4.3.5 Studies on the Inhibition of Aβ_{42} Aggregation ... 145
 4.3.6 Studies on the Circular Dichroism of Aβ_{42} with Dyes 147
 4.3.7 Studies on the Neuroprotective Effect of Cyanine Dyes against Aβ_{42} 148
 4.3.8 Studies of Cyanine Dyes for ROS Suppression ... 149
4.4 Conclusions .. 150
4.5 Experimental ... 151
CHAPTER FIVE Concluding Remarks ...165
Appendix I 1H NMR Spectra of Selected Newly Synthesized Compounds ...168
Appendix II 13C NMR Spectra of Selected Newly Synthesized Compounds ...180
Appendix III HRMS Spectra of Selected Newly Synthesized Compounds ...192
Appendix IV Fluorescence Titration and Nonlinear Fitting Curve of Selected Newly Synthesized with $\alpha\beta_{42}$ Species203
Curriculum Vitae ...213