ABSTRACT

A herbal formula (SL) comprising edible Sophorae Flos and Lonicerae Japonicae Flos was used to treat melanoma in ancient China. In current Chinese medicine practice, the two ingredient herbs of SL are commonly prescribed by Traditional Chinese medicine (TCM) doctors for treating melanoma. However, there is no modern clinical or experimental evidence about the anti-melanoma actions of this formula. Signal transducer and activator of the transcription (STAT3), which is constitutively activated in melanoma, has been proposed as one of the anti-melanoma targets. Some natural compounds in SL have been shown to assault cancers including melanoma via inhibiting STAT3 signaling. In this study, we investigated the anti-melanoma effects and explored STAT3 signaling-related mechanism of action of SL. We also identified bioactive components responsible for SL's anti-melanoma effects.

Our in vitro and in vivo studies showed that SLE, an ethanolic extract of SL, induced apoptosis, inhibited proliferation, migration and invasion in melanoma cells, inhibited melanoma growth, angiogenesis and prolonged host survival in melanoma-bearing mice. SLE significantly suppressed the activation of STAT3 and its upstream kinase Src in both mouse melanoma tissues and cultured melanoma cells. In melanoma cells, we also found that SLE restrained STAT3 nuclear localization and inhibited the expression of STAT3-regulated genes related to melanoma growth, metastasis and angiogenesis. Overactivation of STAT3 in A375 human melanoma cells diminished the anti-proliferative, pro-apoptotic and anti-invasive effects of SLE. RNA-seq and small RNA sequencing analyses showed that SLE altered both the gene expression profile and miRNA signature in B16F10 melanoma tissues. Based on the RNA-seq data, we further validated that SLE inhibited the IL-17-IL-6-STAT3 axis in melanoma. Verification assays for the candidate miRNAs suggested that the significantly upregulated miR-205-5p is a possible target of SLE. Enforced miR-205 expression has been shown to suppress EMT in melanoma cells. In this study, we demonstrated that SLE inhibited melanoma cell EMT, and miR-205-5p knockdown diminished this effect of SLE. In addition, we computationally
demonstrated that luteolin, a naturally occurring edible flavone abundant in Lonicerae Japonicae Flos, could directly bind to Src kinase domain. Experimentally, we verified that luteolin inhibited the Src/STAT3 signaling in both melanoma cells and tissues. In addition to inhibit STAT3 activation, luteolin promoted ubiquitin-proteasome pathway-mediated degradation of STAT3. Luteolin also exerted evident \textit{in vitro} and \textit{in vivo} anti-melanoma effects, and overactivation of STAT3 diminished its anti-melanoma effects.

In conclusion, we demonstrated that SLE exerted \textit{in vivo} and \textit{in vitro} anti-melanoma effects, and inhibition of Src/STAT3 signaling and elevation of miR-205-5p expression contributed to these effects. Luteolin was identified to be one of the active components responsible for the inhibitory effects of SLE on STAT3 signaling and the anti-melanoma effects of SLE. This study provides a pharmacological and chemical basis for the traditional use of the formula SL in treating melanoma, and suggests that SLE and SLE-derived compounds have the potential to be developed as modern alternative and/or complimentary agents for melanoma management.

\textbf{Key words:} Sophorae Flos; Lonicerae Japonicae Flos; \textit{Sophora japonica}; \textit{Lonicera japonica}; Melanoma; STAT3; miR-205-5p; Luteolin;
TABLE OF CONTENTS

DECLARATION .. i

ABSTRACT ... ii-iii

ACKNOWLEDGEMENTS ... iv

TABLE OF CONTENTS ... v-x

LIST OF TABLES .. xi

LIST OF FIGURES ... xii-xvi

LIST OF ABBREVIATIONS ... xvii-xviii

Chapter I Introduction .. 1

1.1 Cutaneous melanoma .. 2

1.1.1 Overview .. 2

1.1.2 Epidemiology .. 3

1.1.3 Melanoma treatment .. 4

1.2 STAT3 is a therapeutic target in melanoma .. 9

1.2.1 General information of STAT3 .. 9

1.2.2 Aberrant activation of STAT3 in malignant tumor cells 10

1.2.3 STAT3 signaling .. 13

1.2.4 Role of STAT3 in melanoma .. 15

1.2.5 Targeting STAT3 for cancer prevention and treatment 17

1.3 miR-205 as a promising therapeutic target for melanoma 20

1.3.1 Overview of microRNA ... 20

1.3.2 Expression status and gene targets of miR-205 in cancers 23

1.3.3 Role of miR-205 in melanoma ... 24

1.3.3.1 Aberrant expression of miR-205 in melanoma 24

1.3.3.2 miR-205 inhibits melanoma cell survival 27
Chapter III Inhibiting STAT3 signaling is one of the mechanisms underlying the anti-melanoma effects of SLE

3.1 Experimental design

3.2 Results

3.2.1 Cytotoxic effects of SL extracts

3.2.2 Quality control of SLE

3.2.3 SLE restrained melanoma growth in a B16F10 allograft model

3.2.4 SLE exhibited higher cytotoxicity in melanoma cells than in normal skin cells

3.2.5 SLE induced apoptosis of A375 human melanoma cells

3.2.6 SLE suppressed migratory and invasive abilities of melanoma cells

3.2.7 SLE inhibited STAT3 activation in both melanoma tissues and melanoma cells
3.2.8 SLE inhibited STAT3 nuclear localization in melanoma cells

3.2.9 SLE reduced the expression of STAT3 target genes in melanoma cells

3.2.10 Cytotoxic potency of SLE in melanoma cells was phospho-STAT3 basal level dependent

3.2.11 Overexpression of STAT3C in A375 cells diminished the effects of SLE on cell proliferation, apoptosis and invasion

3.3 Summary

Chapter IV Exploring the involvement of the IL-17-IL-6-STAT3 axis in the anti-melanoma effects of SLE

4.1 Experimental design

4.2 Results

4.2.1 RNA-seq data analysis

4.2.2 SLE suppressed the IL-17-IL-6-STAT3 axis in melanoma

4.2.3 Dose-dependent in vivo effects of SLE on melanoma growth in mice

4.2.4 SLE suppressed melanoma cell proliferation in vivo

4.2.5 SLE induced melanoma cell apoptosis in vivo

4.2.6 SLE inhibited melanoma angiogenesis in vivo

4.2.7 SLE prolonged the survival time of B16F10 melanoma-bearing mice without observable toxicity

4.3 Summary

Chapter V SLE inhibited melanoma cell EMT by enforcing miR-205-5p expression

5.1 Experimental design

5.2 Results

5.2.1 SLE altered miRNA signature in B16F10 melanoma

5.2.2 SLE enhanced miR-205-5p expression and reduced miR-205-5p target genes expression in melanoma cells
5.2.3 SLE induced morphological and phenotypic changes in melanoma cells ... 116
5.2.4 SLE regulated the expression of EMT-related markers in both melanoma cells and melanoma tissues 118
5.2.5 miR-205-5p knockdown diminished the inhibitory effects of SLE on melanoma cell EMT 123

5.3 Summary ...126

Chapter VI Luteolin targeting STAT3 activity and stability exerts anti-melanoma effects ... 127

6.1 Experimental design .. 128
6.2 Results ...129

6.2.1 Luteolin directly bound to the kinase domain of Src .. 129
6.2.2 Luteolin inhibited Src/STAT3 signaling in melanoma cells 133
6.2.3 Luteolin exhibited higher cytotoxicity in melanoma cells than in normal skin cells ... 137
6.2.4 Luteolin induced apoptosis of A375 melanoma cells .. 140
6.2.5 Luteolin attenuated the migratory and invasive potential of melanoma cells ... 142
6.2.6 Luteolin inhibited melanoma growth and Src/STAT3 signaling in B16F10 allograft and A375 xenograft models .. 144
6.2.7 Luteolin promoted ubiquitin-proteasome pathway (UPP)-mediated degradation of STAT3 in A375 cells .. 147
6.2.8 Overexpression of STAT3C diminished luteolin-induced cell viability inhibition and apoptosis induction in A375 cells .. 149

6.3 Summary ...151

Chapter VII General discussion, Conclusion, and Future plans ... 152

7.1 General discussion and conclusion .. 153
7.2 Significance of this study ... 159
7.3 Future plans………………………………………………………………………160

7.3.1 Determine the contribution of IL-17-IL-6-STAT3 inhibition to the anti-melanoma effects of SLE in mice and cultured melanoma cells ………… 160
7.3.2 Investigate the effects of SLE on melanoma cell senescence and identify the role of miR-205-5p in these effects 160
7.3.3 Determine how miR-205-5p is upregulated by SLE treatment in melanoma cells……………………………………………………………… 161
7.3.4 Further identify active components in SLE responsible for its anti-melanoma effects ... 162
7.3.5 Further conduct preclinical studies toward developing SLE or SLE-based anti-melanoma agents…………………………………………… 162

REFERENCES ... 163

PUBLICATIONS ... 186

CURRICULUM VITAE .. 193