ABSTRACT

Bulk heterojunction (BHJ) organic photovoltaic (OPV) is one of the most promising techniques to generate electricity with advantages of flexibility, solution processing and capability for large area device fabrication. Although the power conversion efficiency (PCE) of BHJ solar cells has already achieved over 13%, there are still problems remain to be solved. This thesis presents the binary and ternary organic BHJ devices with alternative donor:acceptor (D:A) ratios, and the charge transport properties and electronic interactions in their BHJ films.

In a high performance BHJ solar cell, the commonly optimized D:A weight ratio is about 1:x, where x is commonly in excess of 1.5, when PC71BM is used as the acceptor. We demonstrated how to achieve high PCEs of BHJ solar cells by enriching the D:A weight ratios. The PCEs of the re-optimized cells were improved for the PTB7:PC71BM, PCDTBT:PC71BM, PDTSTPD:PC71BM devices. Current-voltage (JV) and admittance spectroscopy (AS) measurements indicate enhanced hole mobilities for the polymer-rich BHJs based on PTB7, PCDTBT, and PDTSTPD. At the same time, although the relative weight ratio of PC71BM is reduced, the electron mobilities are maintained due to the dispersion of fullerene domains by increased DIO concentrations.

The active layer thickness of most optimized BHJ solar cells is about 100nm. The thin active layer is unfavorable for optical absorption and film coating. We employed a ternary strategy to address this problem, and the thick-film BHJ devices can retain 90% PCEs of their optimized thin-film devices. Three model systems were studied, involving PTB7:PC71BM,
PTB7-\text{Th}:PC_{71}\text{BM} and P3HT:PCBM BHJs. Into these BHJs, a ternary component, p-DTS(fbth)\textsubscript{2} (DTS) is introduced. With DTS, the corresponding thick film devices have significantly improved PCEs. The ternary component DTS improves hole mobility and reduces sub-bandgap trap states. Both observations are well correlated with improved FFs of the ternary BHJ cells. Photothermal deflection spectroscopy (PDS) and \textit{\textit{1H}} nuclear magnetic resonance (\textit{1H} NMR) results indicate that DTS behaves as conducting bridges in between two neighboring polymer segments.

Most lab-based BHJ solar cells are optimized by their power conversion efficiencies (PCEs). We challenge this conventional view by showing that BHJ cells using fullerene acceptors should be optimized by their fill-factors (FFs). With the optimized-FF approach, BHJ cells tend to have higher fullerene content when compared to the BHJ cells that are optimized by PCEs. The FF-optimized BHJ cells have slightly reduced PCEs (due to smaller J_{sc}s) compared to the PCE-optimized cells. Yet, FF-optimized cells enjoy a much better thermal stability. We demonstrate that these FF-optimized BHJs possess better-balanced electron-to-hole mobility ratios due to weakly field-dependent electron mobilities. The improved mobility ratio suppresses carrier recombination. Our results suggest that BHJ cells optimized by their PCEs should be meta-stable, and other D:A ratios should be considered for practical BHJ cell development.
TABLE OF CONTENTS

Declaration...i
Abstract...iii
Acknowledgements ...v
Table of Contents ..vi
List of Figures...x
List of Tables...vi
List of Symbols.. vii
List of Abbreviations .. vi

Chapter 1 Introduction...1

Chapter 2 Basic Concepts and Theories for Organic Semiconductors
and Devices ...14

2.1 Introduction for Organic Semiconductors ...14

2.2 Charge Carrier Transports in Organic Semiconductors ...17
 2.2.1 Hopping Transport in Organic Semiconductors ...17
 2.2.2 Carrier Mobility and Conductivity ..19
 2.2.3 Factors Influencing Carrier Mobility ...20
 2.2.4 Gaussian Disorder Model ...24
 2.2.5 Space Charge Limitation Current (SCLC) Measurements ...28
 2.2.6 Admittance Spectroscopy (AS) Measurements ..31

2.3 Organic Photovoltaic (OPV) Devices and Measurements ...35
 2.3.1 Working Principle of OPV Devices ..35
 2.3.2 Current Density – Voltage (JV) Curves ...37
 2.3.3 External Quantum Efficiency (EQE) and Spectral Responsivity41

2.4 Nuclear Magnetic Resonance (NMR) Spectroscopy ...42

2.5 Fluorescence Measurements for BHJ Films ...48
 2.5.1 Time-resolved Photoluminescence (PL) ..48
Chapter 3 Experimental Details ... 53

3.1 Device Fabrication ... 53

3.1.1 Substrate Treatment ... 53

3.1.2 Thin Film Deposition ... 56

3.2 Organic Photovoltaic (OPV) Device Measurements 61

3.2.1 Current Density – Voltage (JV) Characteristic 61

3.2.2 External Quantum Efficiency (EQE) Spectrum 63

3.3 Charge Carrier Transport Measurements .. 65

3.3.1 Space-charge-limitation Current (SCLC) Measurement 66

3.3.2 Admittance Spectroscopy (AS) Measurement 67

3.4 Measurements for Nuclear Magnetic Resonance (NMR) Spectroscopy 70

Chapter 4 Bulk Heterojunction (BHJ) Organic Photovoltaic (OPV)

Devices with Enriched Polymer Contents ... 74

4.1 Introduction .. 74

4.2 Experimental Details .. 76

4.3 Results and Discussions .. 78

4.3.1 OPV Device Performances with Various D:A Ratios 78

4.3.2 External Quantum Efficiency (EQE) Spectra and Analysis 82

4.3.3 SCLC Measurements for Hole Mobilities 85

4.3.4 Carrier Transport Measurements by Admittance Spectroscopy (AS) 87

4.3.5 Limitations of Polymer-rich Strategy 94

4.4 Summary ... 100
Chapter 5 Thick-Film High-Performance Bulk-Heterojunction Solar Cells Retaining 90% PCEs of the Optimized Thin Film Cells105
 5.1 Introduction ... 105
 5.2 Experimental Details ... 109
 5.3 Results and Discussions ... 110
 5.3.1 Ternary PTB7:DTS:PC$_71$BM Device Performances ... 110
 5.3.2 Hole Transport Analysis for Ternary PTB7:DTS:PC$_71$BM BHJ Films 119
 5.3.3 Photothermal Deflection Spectroscopy (PDS) for Sub-Bandgap Optical Absorptions .. 127
 5.3.4 1H Nuclear Magnetic Resonance (NMR) Measurements of Supramolecular Interactions .. 130
 5.3.5 PTB7-Th:DTS:PC$_71$BM and P3HT:DTS:PC$_71$BM Ternary Devices 134
 5.4 Summary .. 140

Chapter 6 Fill-Factor Optimized Bulk-Heterojunction Solar Cells Achieving Better Device Stability .. 144
 6.1 Introduction ... 144
 6.2 Experimental Details ... 148
 6.3 Results and Discussions ... 149
 6.3.1 Polymer:PC$_71$BM OPV Devices with Various D:A Weight Ratios 149
 6.3.2 Carrier Transport Analysis for PTB7:PC$_71$BM BHJ Films 155
 6.3.3 Sub-Bandgap Optical Absorption and Fluorescence Decay Measurements for BHJ Films ... 167
 6.3.4 Stability Test for Fullerene-rich PTB7:PC$_71$BM OPV Devices 169
 6.4 Summary .. 173
Chapter 7 Conclusions and Outlook ... 179

Curriculum Vitae ... 190