Abstract:

Luminescent lanthanide coordination complexes have attracted significant attention due to their unique optical properties. The poor absorption of a lanthanide ion can be resolved by so-called antenna effect and improve the intensity of its luminescence. Three bidentate chromophores: phosphate-pyridine chromophore, 1,2-Hydroxy pyridone (1,2-HOPO) and 2-thenoyltrifluoroacetone (TTA), functioned as both chelator and sensitizer, their energy levels are well matched with the excited state energy levels of the Eu(III) and Sm(III).

To get highly luminescent and stable lanthanide complex, we designed and synthesized various Eu(III) complexes with different backbones to compare different parameters that will affect the sensitizing efficiency of the chromophores, such as rigidity, geometry and coordination saturation.

In chapter two we combined the phosphate-pyridine chromophore with the well-studied cyclen-based chelator to fulfil the requirement of high stability and brightness. We designed a nine-coordinate europium(III) complex as platform, through coupling reactions to realise fast screen of the chromophores energy transfer efficiency.

Chapter three focuses on the structure modifications based on the chromophore of 1,2-HOPO, different chelators and backbones were compared, a europium complex EuL4 with the highest quantum yield with this chromophore was obtained and it could goes into cells and localized on lysosome very fast. Two-phonon in vitro imaging was done which showed its high potential bioapplications.
Chapter four focuses on the structure modification based on the chromophore of TTA. Different backbone directly determined the europium complexes saturation number and sensitization efficiency, therefore, their quantum yields.
Table of Content

Abstract: ii
Acknowledgement iv
List of Tables: ix
List of Figures: ix
List of Schemes: xiii
List of Symbols: xiv
List of Abbreviation: xiv

Structural Modifications to Optimise Lanthanide Luminescence 1

Chapter One 1

Introduction to the Lanthanides and Their Photophysical Properties 1

1.1 General Introduction to Lanthanides 1

1.2 Lanthanide Chemistry 2

1.2.1 Oxidation States and Electronic Properties 2

1.2.2 Ionic Radii and Coordination Properties 3

1.3 Lanthanide Luminescence 5

1.3.1 Important Terms and Properties 7

1) Energy Levels in the Lanthanide Ions 7

2) The Antenna Effect 8

3) Hypersensitivity 10

4) Lifetime and Quantum Yield 10

1.3.2 Energy Transfer Mechanism 13

1.3.3 Optimisation of Energy Transfer 14

1.3.4 Quenching, Nonradiative Decay of Lanthanide Ions 17

1.4 Parameters for Luminescent Lanthanide Complexes as Probes for Bioapplications 19

1.4.1 Stability 20

1.4.2 Chromophore 24

1.4.2.1 Small Organic Molecules as Lanthanide Chromophores 25

1.4.2.2 Organic Dyes as Lanthanide Chromophores 25

1.4.2.3 Metal-Organic Complexes as Lanthanide Chromophores 26

1.5 Two-photon Absorption of Lanthanide Complexes 30

1.5.1 The Theory of Two-photon Absorption and Two-photon Excitation 31

1.5.2 Typical Two-photon Absorption Lanthanide Complexes 33

1.6 Conclusion 34

Chapter Two 36

Synthesis of Europium Complexes with Phosphate-Pyridine Chromophores 36

2.1 Outline and Direction of Work 36

2.2 Design and Synthesis of DO3A-based Phosphate-Pyridine Europium Complexes 38

2.2.1 Chromophore Synthetic Scheme 38

2.2.2 Synthesis of LnP1 Complexes 40

2.2.3 Photophysical Properties of LnP1 41

2.2.3.1 Absorption Properties 42
2.2.3.2 Excitation and Emission Properties 43
2.2.3.3 Lifetimes (Emission Decay) 44
2.2.3.4 Summary of Photophysical Properties 45
2.2.3.5 Low-Temperature Studies of GdP1 46
2.2.4 Stability Studies for LnP1 47
2.2.5 Discussion for the Photophysical Properties 48

2.3 Chromophore Structure Modification 49
2.3.1 Photophysical Properties of EuP2 - EuP7 51
 2.3.1.1 Absorption, Excitation and Emission Spectra of EuP2 - EuP7 51
 2.3.1.2 Lifetimes (Emission Decay) 54
 2.3.1.3 Summary of Photophysical Properties of EuP2 - EuP7 59
2.3.2 Summary of the Chromophore Modification 60

Chapter Three 61

Synthesis of Cyclen-based Lanthanide Complexes with 1,2-HOPO 61
3.1 Introduction to the 1,2-HOPO 61
3.2 Outline and Direction of Work 64
3.3 Synthesis of Ln-DO3A-1,2-HOPO Complexes 65
 3.3.1 Chromophore Synthetic Scheme 66
 3.3.2 Ligand and Complex Synthetic Scheme 67
 3.3.2.1 The Synthesis of LnL1 67
 3.3.2.2 Synthesis of LnL2 68
 3.3.2.3 The Synthesis of LnL3 70
 3.3.3 Photophysical Properties of Synthesised Complexes (LnL1 – LnL3) 73
 3.3.3.1 Absorption Properties 74
 3.3.3.2 Excitation and Emission Properties 75
 3.3.3.3 Lifetimes (Emission Decay) 77
 3.3.4 Summary of Photophysical Properties 83
 3.3.5 Conclusion for the Complexes EuL1 – EuL3 83
 3.4 New Direction (Octadentate Ligation) 85
 3.4.1 Synthesis of Octadentate Ligation of LnL4 86
 3.4.2 Photophysical Properties of LnL4 87
 3.4.2.1 Absorption, Excitation and Emission Spectra of EuL4 and SmL4 88
 3.4.2.2 Lifetimes (Emission Decay) 89
 3.4.2.3 Photophysical Properties of GdL4 91
 3.4.3 Summary of Photophysical Properties of LnL4 93
 3.5 Cell Imaging 94
 3.6 Conclusion 96

Chapter Four 97

Synthesis of Lanthanide Complexes with TTA Chelator 97
4.1 Overview of β-Diketone Ligands and Types of Complexes 97
4.2 Bioapplication of Lanthanide β-Diketionate Complexes 100
4.3 Lanthanide Complexes with TTA Chelator 102
4.4 Outline and Direction of Work 103
4.5 Synthesis of Ln-Cyclen-TTA Complexes 104
 4.5.1 Screening of Synthetic Route 105
 4.5.2 Synthesis of LnL5 107
 4.5.3 Photophysical Properties of LnL5 110
4.5.3.1 Absorption, Excitation and Emission Spectra of EuL5
4.5.3.2 Lifetime (Emission Decay) of EuL5
4.5.3.3 Summary of Photophysical Properties
4.6 The Design and Synthesis of Ln-H(2,2)-TTA and Ln-(3,4,3)-TTA
4.6.1 The Synthesis of LnL6
4.6.2 The Synthesis of LnL7
4.7 Photophysical Properties of LnL6 and LnL7
4.7.1 Absorption, Excitation, Emission Properties
4.7.2 Lifetime (Emission Decay)
4.8 Cell Imaging
Chapter Five
Experimental
5.1 Materials and General Methods
5.2 Spectroscopic and photophysical measurements
5.2.1 Lifetime Measurement
5.2.2 Inner Sphere Solvent Number (q value)
5.2.3 Molar Absorption Coefficient Measurement
5.2.4 Triplet Energy Measurements
5.2.5 Quantum Yield Determination
5.3 Synthetic Procedure and Characterization
Appendix:
1H and 13C NMR Spectra
HRMS:
Charts for Measurement of the Extinction Coefficient:
References: