ABSTRACT

Lung cancer accounted for 28% of all cancer related deaths in Hong Kong and has been the leading cause of cancer death worldwide. Non-small cell lung cancer (NSCLC) is the most common lung cancer (85%) and has been linked to poor prognosis with 5-year survival rates of only 15%. Low accumulation and lack of efficient penetration of therapeutic agents in the tumor site, and severe adverse effects are the main obstacles in efficient lung cancer chemotherapy.

Triptolide (TPL), a diterpenoid triepoxide, was first isolated from the Chinese medicinal plant *Tripterygium wilfordii* Hook F. It had attracted extensive attention for its anti-tumor effect. However, its therapeutic potential has been limited by the poor water solubility (0.017 mg/mL) and strong toxicity with LD$_{50}$ of 0.8 mg/kg. To improve the therapeutic effects and facilitate the application of TPL in lung cancer therapy, we developed different ligands-modified TPL-loaded liposomal formulations for lung cancer specific delivery.

Antibody-decorated liposomes can facilitate the precise delivery of chemotherapeutic drugs to the lung by targeting a recognition factor present on the surface of lung tumor cells. Carbonic anhydrase IX (CA IX), an enzyme overexpressed on the surface of lung cancer cells with a restricted expression in normal lungs, is used as the target for NSCLC therapy. In the present study, anti-CA IX antibody-modified TPL-loaded liposomes was developed. CA IX-directed liposomes exhibited 1.7-fold enhancement in internalization effects and 2-fold higher cytotoxicity in CA IX-positive human non-small cell lung cancer cell line A549. *In vivo*, CA IX-directed liposomes confined the delivery specifically to the lung and resided up to 96 h, which further showed enhanced therapeutic efficiency in orthotopic lung tumor bearing mice.

CPP33 is a tumor lineage-homing cell-penetrating peptide reported to be highly permeable into human lung cancer cell. Here, we utilized CPP33 for translocation of TPL-liposomal formulation into lung tumor cells. *In vitro*, CPP33-TPL-lip significantly improved apoptotic feature on A549 cells than non-modified liposomes. CPP33-lip specifically promoted the penetration ability of liposomes on A549 rather than human lung fibroblast cells (MRC-5), showing prominent cell selectivity. Furthermore, CPP33-lip showed superior penetrating ability on 3D tumor spheroids compared to non-modified liposomes.

A dual-ligand TPL-loaded liposomes (dl-TPL-lip) via conjugation of anti-CA IX antibody (targeting module) and CPP33 (trans-membrane module) was further developed to improve the therapeutic efficacy of NSCLC. The dl-TPL-lip showed superior penetrating ability and inhibiting effect on 3D tumor spheroids and significantly enhanced TPL anti-cancer efficacy following pulmonary administration in orthotopic lung cancer nude mice. The encapsulation of TPL in liposomes reduced the exposure of TPL in systemic circulation, which is demonstrated by pharmacokinetic study in rat plasma by endotracheal
administration. Further anti-cancer effect study showed that dl-TPL-lip exhibited the greatest efficacy compared to TPL solution, non-modified TPL-loaded liposomes, anti-CA IX Ab or CPP33 single ligand-modified liposomes.

In summary, the findings of this study establish promising TPL delivery systems for targeted therapy of lung cancer. Current research focusing on drug delivery systems provides an insight into targeted and safe delivery of TPL in preclinical setting.
TABLE OF CONTENTS

DECLARATION ...i
ABSTRACT ...ii
ACKNOWLEDGEMENTS ...iv
TABLE OF CONTENTS ..v
LIST OF TABLES ..v
LIST OF FIGURES ...xi
LIST OF ABBREVIATIONS ..xix

CHAPTER 1 Introduction .. 1
 1.1 Current status of cancer therapy ... 2
 1.2 Triptolide and its application in lung cancer therapy ... 3
 1.3 Aerosolized chemotherapy for lung cancer ... 5
 1.4 Liposomes as a targeted drug delivery system (TDDS) .. 6
 1.5 Carbonic anhydrase IX as a target for cancer therapy .. 12
 1.6 Cell-penetrating peptides (CPPs) as a ligand for targeted drug delivery 17
 1.7 Scope and objectives of the study ... 20
 1.7.1 Scope of the study ... 20
 1.7.2 Objectives of the study .. 23

CHAPTER 2 In vitro study of triptolide-loaded liposomes decorated with anti-carbonic anhydrase IX antibody .. 24
 2.1 Introduction .. 25
 2.2 Materials .. 27
 2.3 Methods .. 28
2.3.1 Preparation of liposomal TPL…………………………………………………………28
2.3.2 Incorporation of anti-CA IX antibody into preformed liposomes29
2.3.3 The characterization of liposomes………………………………………………..30
2.3.4 Expression of CA IX by A549 cells ……………………………………….32
2.3.5 Cellular uptake of CA IX-Lips ……………………………………………………33
2.3.6 In vitro cytotoxicity assay……………………………………………………..34
2.3.7 Statistical analysis………………………………………………………………..35
2.4 Results and discussion…………………………………………………………….35
2.4.1 Preparation and characterization of liposomal TPL …………………….35
2.4.2 Cellular uptake of CA IX-Lips …………………………………………………43
2.4.3 In vitro cytotoxicity of CA IX-TPL-Lips …………………………………….46
2.5 Conclusion………………………………………………………………………47

CHAPTER 3 In vivo study of triptolide-loaded liposomes decorated with anti-carbonic anhydrase IX antibody ………………………………………………………48
3.1 Introduction ………………………………………………………………………..49
3.2 Cells and animals …………………………………………………………………50
3.3 Methods……………………………………………………………………………50
3.3.1 Establishment of orthotopic lung tumor models………………..50
3.3.2 Bio-distribution of CA IX-Lips …………………………………………..51
3.3.3 In vivo anti-cancer efficacy ……………………………………………….51
3.3.4 Statistical analysis…………………………………………………………….52
3.4 Results and discussion…………………………………………………………52
3.4.1 Establishment of orthotopic lung tumor models………………..52
3.4.2 Bio-distribution of CA IX-Lips …………………………………………..54
3.4.3 In vivo anti-cancer efficacy ……………………………………………….56
3.5 Conclusion..60

CHAPTER 4 Study of CPP33-TPL-liposomes on 2D lung tumor cells and 3D tumor spheroids... 62

4.1 Introduction..63

4.2 Materials..65

4.3 Methods..66

4.3.1 Synthesis of DSPE-PEG-MAL-CPP33 conjugate...66

4.3.2 Preparation and characterization of liposomes...67

4.3.3 The characterization of liposomes ...67

4.3.4 Apoptosis assay ..68

4.3.5 Cellular uptake study ..68

4.3.6 Formation of A549 tumor spheroids ...69

4.3.7 Penetration into 3D tumor spheroids ...69

4.4 Results and discussion ..69

4.4.1 Synthesis of DSPE-PEG-MAL-CPP33 conjugate...69

4.4.2 Preparation and characterization of CPP33-TPL-lip..71

4.4.3 Apoptosis assay ..73

4.4.4 Cellular uptake study ..75

4.4.5 Formation of A549 tumor spheroids ...76

4.4.5 Penetration into 3D tumor spheroids ...77

4.5 Conclusion..78

CHAPTER 5 Study of anti-CA IX antibody and CPP33 dual-ligand TPL-liposomes on 2D lung tumor cells and 3D tumor spheroids .. 80

5.1 Introduction ...81
5.2 Materials .. 83
5.3 Methods .. 84
5.3.1 Preparation of dl-TPL-lip .. 84
5.3.2 Characterization of dl-TPL-lip .. 85
5.3.3 In vitro drug release study .. 86
5.3.4 Wound healing assay .. 86
5.3.5 In vitro apoptosis assay ... 87
5.3.6 Penetration in 3D tumor spheroids .. 87
5.3.7 3D tumor spheroids inhibition .. 88
5.4 Results and discussion ... 89
5.4.1 Preparation and characterization of dl-TPL-lip .. 89
5.4.2 In vitro drug release study .. 91
5.4.3 Wound healing study .. 92
5.4.4 In vitro apoptosis assay ... 93
5.4.5 Penetration in 3D tumor spheroids .. 94
5.4.7 3D tumor spheroids inhibition .. 96
5.5 Conclusion ... 97

CHAPTER 6 In vivo study of anti-CA IX antibody and CPP33 dual-ligand TPL-liposomes ... 99

6.1 Introduction .. 100
6.2 Cells and animals .. 101
6.3 Methods .. 101
6.3.1 Pharmacokinetics study of dl-TPL-lip after pulmonary administration to rats ... 102
6.3.2 Analytical method for pharmacokinetics study ... 102
6.3.3 Signal detection of different A549-Red-Fluc cell number103
6.3.4 Establishment of orthotopic lung tumor models.................104
6.3.5 Anti-tumor effect of dl-TPL-lip in orthotopic mice model of lung
cancer...104
6.3.6 Data analysis..105
6.4 Results and discussion..105
6.4.1 UHPLC-QQQ MS/MS method validation for pharmacokinetic
study..105
6.4.2 Pharmacokinetics study of dl-TPL-lip after pulmonary
administration to rats ..107
6.4.3 Signal detection of different A549-Red-Fluc cell number109
6.4.4 Establishment of orthotopic lung tumor models...............110
6.4.5 Anti-tumor effect of dl-TPL-lip in orthotopic mice model of lung
cancer..111
6.5 Conclusion..112

CHAPTER 7 General conclusion and future prospects
..114
7.1 General conclusion..115
7.2 Future prospects ..118

LIST OF REFERENCES...120

PUBLICATIONS..137
CURRICULUM VITAE..140