ABSTRACT

Radix Astragali (the dried root of Astragalus membranaceous (Fisch) Bge.) and Dendrobii Officinalis Caulis (the dried stem of Dendrobium officinale Kimura et Migo) are two traditional Chinese tonic herbs. They are commonly used in the formula with other Chinese herbs for tonifying Qi, nourishing Yin, and treating various kinds of diseases, such as cancer, diabetes, inflammation, etc. The polysaccharides are considered the majority of the chemical components of decoction boiled from a formula including these two medicinal herbs. The previous study showed that the polysaccharides isolated from Radix Astragali (named RAP) and Dendrobii Officinalis Caulis (named DOP) have various pharmacological activities and most of their activities are closely related to their immunomodulating effects. Nonetheless, the exact mechanism of their immunomodulating effects, especially on macrophages is not known clearly.

In the current study, we have conducted a comprehensive investigation of the bioactive properties and molecular mechanism of immunomodulating activities of DOP and RAP. We aimed to clarify the molecular immunomodulating mechanism of RAP on macrophages and the actual anti-fatigue activity of DOP in vivo. Results can be summarized as follows:

RAP itself did not have any cytotoxic effect on mouse mammary carcinoma 4T1 cells, but it significantly enhanced cytotoxicity of the supernatant of RAW264.7 cells on 4T1 cells. Furthermore, RAP enhanced the production of NO and cytokines in RAW264.7 cells, and significantly up-regulated gene expressions of TNF-α, IL-6, iNOS. All these bioactivities were blocked by the inhibitor of TLR4 (Toll-like receptor 4), suggesting that TLR4 is a receptor of RAP and mediates its immunomodulating activity. Further analyses demonstrated that RAP rapidly activated TLR4-related MAPKs, including phosphorylated ERK, phosphorylated JNK, and phosphorylated p38, and induced translocation of NF-κB as well as degradation of IκB-α.

In addition, RAP induced higher gene expression of M1 marker, including iNOS, IL-6, TNF-α, CXCL10, compared with those of control group. RAP-induced BMDMs were polarized from M2 to M1 phenotypes. RAP stimulated RAW264.7 cells to express Notch1, Notch2, Jaddge1, Dll1 and SOCS3. Notch signaling pathway played an important role in the RAP-induced polarization of M1 phenotype macrophages. The RAP-induced BMDMs exhibited anti-cancer effect when they were transplanted with 4T1 cells together in vivo and it decreased tumor volume and tumor weight.

DOP, the authentication marker of Dendrobii Officinalis Caulis, has immunomodulating activity in macrophage cell line RAW 264.7. DOP enhanced
cell proliferation, TNF-α secretion, and phagocytosis in a dose-dependent manner. It induced the proliferation of lymphocytes alone and with mitogens. For further study the anti-fatigue effect of DOP in vivo, the weight-loaded swimming test was used, because it is an effective method for evaluation of the extent of fatigue. The results indicated that DOP treatment significantly increased the swimming endurance time, body weight, and food intake, compared to the positive control Rhodiola rosea extract. Moreover, the weight-loaded swimming test decreased the levels of glycogen in gastrocnemius muscle, SOD, GSH-Px in serum, and increased the levels of LDH, BUN, MDA, CK, TG, and LD in serum. All of these indicators of fatigue were inhibited to a certain extent by both DOP and Rhodiola rosea extract, and DOP’s effects are stronger. Furthermore, DOP-feeding mice showed significantly increased cell variability of T lymphocytes and B lymphocytes, compared with control mice.

In conclusion, RAP may induce cytokine production of RAW264.7 cells through TLR4-mediated activation of MAPKs and NF-κB. RAP-induced BMDMs were polarized from M2 to M1 phenotypes through Notch signaling pathway. The unique and dominant polysaccharide DOP is proven to be major, active polysaccharide markers of D. officinale, and showed stronger anti-fatigue activity than Rhodiola rosea extract. As such, DOP has promising potential for pharmaceutical development into anti-fatigue health product.
TABLE OF CONTENTS

DECLARATION	...	i
ABSTRACT	..	ii
ACKNOWLEDGEMENTS	..	iv
TABLE OF CONTENTS	...	vi
LIST OF TABLES	..	x
LIST OF FIGURES	...	xi
LIST OF ABBREVIATIONS	...	xiv

CHAPTER 1 INTRODUCTION OF POLYSACCHARIDES ISOLATED FROM RADIX ASTRAGALI AND *DENDROBIUM OFFICINALE* | 1 |

1.1 General introduction of Radix Astragali | 1 |
1.1.1 Chemical composition of Radix Astragali | 3 |
1.1.2 Studies on bioactivities of Radix Astragali polysaccharides | 4 |
1.1.2.1 Immunopotentiating and immunomodulatory activity | 4 |
1.1.2.2 Anti-cancer activity | 6 |
1.1.2.3 Antihyperglycemic activity | 7 |
1.1.2.4 Anti-inflammatory activity and antioxidant activity | 8 |
1.1.2.5 Antiviral activity | 9 |
1.1.2.6 Other effects | 9 |
1.2 General introduction of *Dendrobium officinale* | 12 |
1.2.1 Chemical composition of *Dendrobium officinale* | 14 |
1.2.2 Studies on pharmacological activities of polysaccharides from *Dendrobium officinale* | 15 |
1.3 Objective of this study | 17 |

CHAPTER 2 TLR-4 MAY MEDIATE SIGNALING PATHWAYS OF ASTRAGALUS POLYSACCHARIDE RAP INDUCED CYTOKINE EXPRESSION OF RAW264.7 CELLS | 19 |

2.1 Introduction | 19 |
2.2 Materials and methods | 22 |
2.2.1 Materials | 22 |
2.2.2 RAP preparation | 23 |
2.2.3 Cell cultures | 25 |
2.2.4 Cell viability assay | 25 |
2.2.5 Treatment | 26 |
2.2.6 RNA extraction and reverse | 27 |
2.2.7 Real-time quantitative PCR | 27 |
2.2.8 Measurement of nitric oxide | 29 |
2.2.9 ELISA for quantitative analysis of cytokines | 29 |
2.2.10 Western blot assays of ERK, JNK and p38 MAPKs in
RAP-induced RAW264.7 cells ... 30
2.2.11 Immunofluorescence staining ... 30
2.2.12 Statistical analysis .. 31
2.3 Results ... 31
 2.3.1 RAP enhanced cytotoxicity of supernatants from RAW264.7 cells ... 31
 2.3.2 RAP induced IL-6, NO, and TNF-α production in RAW264.7 cells .. 34
 2.3.3 RAP up-regulated iNOS, TNF-α and IL-6 gene expression 35
 2.3.4 TLR4 mediates RAP-induced gene expressions and may participate in the signaling pathways of RAP 35
 2.3.5 RAP activated MAPK phosphorylation in RAW264.7 cells ... 39
 2.3.6 RAP induced IκB-α degradation and NF-κB translocation into nucleus... 42
2.4 Discussion ... 43
2.5 Conclusion ... 49

CHAPTER 3 ASTRAGALUS POLYSACCHARIDE RAP INDUCES PHENOTYPE POLARIZATION FROM M2 TO M1 VIA NOTCH SIGNALING PATHWAY ... 51
3.1 Introduction .. 51
3.2 Materials and methods .. 55
 3.2.1 Materials .. 55
 3.2.1.1 Animals and cells cultures ... 56
 3.2.1.2 Mouse models ... 58
 3.2.2 Analysis of macrophage surface antigen expression by flow cytometry ... 58
 3.2.3 Determination of cytokines by ELISA .. 59
 3.2.4 Determination of NO synthesis .. 59
 3.2.5 Cell morphology ... 59
 3.2.6 RNA isolation and RT-PCR ... 60
 3.2.7 Western blot analysis ... 61
 3.2.8 Statistical analysis ... 63
3.3 Results .. 64
 3.3.1 RAP-stimulated BMDMs decreased tumor volume and tumor weight ... 64
 3.3.2 Morphology of BMDMs induced by RAP 66
 3.3.3 Analysis of M1 marker expression on surface of BMDMs 68
 3.3.4 Gene expression of Notch signaling pathway induced by RAP
3.3.5 Blocking of Notch signaling pathway results in M1 marker decreased even in the presence of RAP ... 72

3.4 Discussion ... 72
3.5 Conclusion .. 75

CHAPTER 4 IMMUNOMODULATING EFFECTS OF POLYSACCHARIDES ISOLATED FROM DENDROBIUM OFFICINALE ... 77

4.1 Introduction ... 77
4.2 Materials and methods .. 80
 4.2.1 Materials ... 80
 4.2.2 Cell cultures .. 81
 4.2.3 Cell viability assay .. 81
 4.2.4 ELISA for quantitative analysis of cytokines 81
 4.2.5 Phagocytic assay .. 82
 4.2.6 Lymphocyte proliferation assays ... 83
 4.2.7 Data analysis ... 84
4.3 Results ... 85
 4.3.1 Effects of DOP and its two sub-fractions on proliferation of RAW264.7 cells ... 85
 4.3.2 Effects of DOP and its two sub-fractions on cytokine production of RAW 264.7 cells ... 86
 4.3.3 Phagocytic activities of DOP and its two sub-fractions 87
 4.3.4 Proliferation of mouse spleen lymphocytes after stimulation with DOP and its two sub-fractions ... 87
 4.3.5 Changes of T and B lymphocyte proliferation in synergistical stimulation by DOP and its two sub-fractions with mitogen 89
4.4 Discussion .. 90
4.5 Conclusion .. 92

CHAPTER 5 ANTI-FATIGUE EFFECTS OF THE UNIQUE POLYSACCHARIDES MARKER OF DENDROBIUM OFFICINALE ON BALB/C MICE ... 94

5.1 Introduction ... 94
5.2 Materials and methods .. 97
 5.2.1 Materials ... 97
 5.2.2 Animals and experimental design ... 97
 5.2.3 Weight-loaded swimming endurance time 99
 5.2.4 Biochemical analysis ... 100
5.2.5 Analysis of tissue glycogen contents ... 101
5.2.6 Lymphocyte proliferation assays ... 101
5.2.7 Statistical analysis ... 102
5.3 Results .. 104
 5.3.1 Effects of DOP and *Rhodiola* extract on weight-loaded forced swimming endurance time ... 104
 5.3.2 Effects of DOP and *Rhodiola* extract on body weight and organ indexes ... 105
 5.3.3 Effects of DOP and *Rhodiola* extract on serum biochemical parameters .. 109
 5.3.4 Effects of DOP and *Rhodiola* extract on glycogen in liver and gastrocnemius muscle ... 109
 5.3.5 DOP’s effect on proliferation of mouse lymphocytes 110
5.4 Discussion .. 111
5.5 Conclusion ... 115

CHAPTER 6 SUMMARIES AND PROSPECTS OF THE RESEARCH 117
 6.1 Summary and conclusion of the research ... 117
 6.2 Prospects of the research ... 119
 6.2.1 Studies on the exact molecular mechanism of RAP stimulating macrophages in vivo and in vitro ... 119
 6.2.2 Further investigate more activity and molecular mechanism of DOP in vivo and in vitro ... 120
REFERENCES ... 122
CURRICULUM VITAE ... 146