ABSTRACT

Melanoma is the leading cause of skin cancer-related death. The STAT3 (signal transducer and activator of transcription 3) and TLR4 (toll-like receptor 4) signaling pathways have been shown to be activated in melanoma. Activation of each of the two pathways can promote melanoma growth, angiogenesis and metastasis. Suppressing TLR4 signaling or STAT3 signaling has been proposed as an approach for melanoma management although the TLR4/STAT3 pathway has not yet been established in melanoma. Atractylodis Macrocephalae Rhizoma (Baizhu in Chinese), a Qi-tonifying Chinese medicinal herb, is commonly prescribed by Chinese medicine doctors for treating melanoma. Our previous studies demonstrated that atractylenolide II (AT-II), isolated from Atractylodis Macrocephalae Rhizoma, could induce apoptosis, and inhibit proliferation and migration in B16 melanoma cells. However, the antimelanoma properties of AT-II and the underlying molecular mechanisms have not been fully understood. In this study, we further investigated the antimelanoma effects of AT-II \textit{in vivo} and \textit{in vitro}, and explored the TLR4/STAT3 signaling-related mechanism of action of AT-II.

Results showed that AT-II induced apoptosis, and inhibited proliferation, migration and invasion in multiple melanoma cells, and significantly inhibited melanoma growth, angiogenesis and metastasis in mice. AT-II suppressed the activation of STAT3 and Src (a STAT3 upstream tyrosine kinase) in mouse melanoma tissues and inhibited the EGFR/Src/STAT3 signaling in cultured melanoma cells. The free binding energy of AT-II with EGFR (an upstream receptor tyrosine kinase of STAT3) was relatively low in molecular docking assays, suggesting that AT-II might inhibit EGFR activation via other molecules. We found that activation of TLR4 enhanced EGFR/Src/STAT3 signaling in melanoma cells, and activation of the TLR4/STAT3 pathway contributed to melanoma progression \textit{in vivo} and \textit{in vitro}. These observations suggested that the TLR4/STAT3 pathway was established in melanoma. Molecular docking showed that AT-II could bind to the TLR4/MD-2 receptor complex. AT-II reduced the binding of LPS (a TLR4 ligand) to TLR4, and inhibited LPS-triggered activation of EGFR/Src/STAT3 signaling as well as LPS or MPLAs (synthetic monophosphoryl lipid A, a TLR4 agonist) induced invasion
in melanoma cells. Overexpression of a constitutively active variant of STAT3 (STAT3C) in A375 cells diminished the anti-proliferative, apoptotic and anti-invasive effects of AT-II; and overexpression of an active form of TLR4 in A375 cells diminished AT-II-exerted anti-invasive effects in cultured cells, and attenuated the inhibitory effects of AT-II on tumor growth and angiogenesis in mice. These suggested that suppression of TLR4/STAT3 signaling contributed to the antimelanoma effects of AT-II.

In conclusion, we established the TLR4/STAT3 pathway in melanoma, which provides novel insight into melanoma pathophysiology. We demonstrated that AT-II exerted antimelanoma effects in vivo and in vitro, and inhibition of TLR4/STAT3 signaling contributed to these effects. These findings advanced our understanding of the antimelanoma properties and the underlying mechanism of action of AT-II, and provided a chemical and pharmacological justification for the clinical application of Atractylodis Macrocephalae Rhizoma in melanoma management. This contribution is significant because it is one step in a continuum of research that is expected to lead to future clinical trials of AT-II as a novel antimelanoma agent.

Key words: Atractylodis Macrocephalae Rhizoma; Atractylenolide II; Melanoma; STAT3; TLR4; Chinese medicine
TABLE OF CONTENTS

DECLARATION.. i
ABSTRACT ... ii
ACKNOWLEDGEMENTS ... iv
LIST OF TABLES ... x
LIST OF FIGURES ... xi
LIST OF ABBREVIATIONS ... xv

CHAPTER 1 Introduction ... 1

1.1 Melanoma facts ... 2
 1.1.1 Epidemiology of melanoma ... 3
 1.1.2 Risk factors for melanoma ... 3
 1.1.3 Pathogenesis of melanoma ... 4
 1.1.4 Current treatment of melanoma ... 6

1.2 Signal transducer and activator of transcription 3 (STAT3) 12
 1.2.1 Role of STAT3 in melanoma progression ... 13
 1.2.2 Routes to constitutive activation of STAT3 in melanoma 15
 1.2.3 Strategies of targeting STAT3 for melanoma management 17

1.3 Toll like receptor 4 (TLR4) ... 21
 1.3.1 The TLR4 signaling pathways .. 23
 1.3.2 Role of TLR4 in melanoma progression .. 25
 1.3.3 Crosstalk between TLR4 signaling and STAT3 signaling 26
1.4 Chinese medicinal herbs for melanoma treatment .. 27

1.5 Atractylenolide II (AT-II) ... 31
 1.5.1 Clinical use of Atractylodis Macrocephalae Rhizoma for cancer treatment.... 32
 1.5.2 Bioavailability and safety of AT-II ... 33
 1.5.3 Bioactivities of AT-II .. 34
 1.5.3.1 Anti-inflammation, anti-thrombosis and other bioactivities 34
 1.5.3.2 Anti-cancer activities ... 36

1.6 Hypothesis and objectives .. 37

CHAPTER 2 Materials and Methods ... 38

2.1 Materials and reagents... 39
2.2 Cell culture and AT-II treatment... 41
2.3 Cell viability assay .. 41
2.4 Cell apoptosis assay .. 42
2.5 Cell migration assay .. 42
2.6 Cell invasion assay .. 43
2.7 Western blotting .. 43
2.8 Real-time quantitative polymerase chain reaction (q-PCR) analysis...................... 44
2.9 Plasmid transient transfection ... 45
2.10 Establishment of stable cell lines .. 46
2.11 Melanoma-bearing mouse models ... 47
2.12 The B16F10 melanoma lung metastasis mouse model ... 48
2.13 Immunohistochemistry (IHC) staining... 49
2.14 Human Phospho-Receptor Tyrosine Kinase (Phospho-RTK) array 49
4.2.3 Overexpression of STAT3C weakened the antimelanoma effects of AT-II ... 77

4.3 Discussion and conclusion ... 80

CHAPTER 5 Involvement of the EGFR/STAT3 signaling in the inhibitory effect of atractylenolide II on melanoma cell invasion 81

5.1 Abstract ... 82

5.2 Results ... 83

5.2.1 Human Phosphor-Receptor Tyrosine Kinase (Phospho-RTK) array analyses of AT-II-treated A375 cells ... 83

5.2.2 AT-II inhibited EGF-induced Src and STAT3 activation in melanoma cells . 86

5.2.3 AT-II inhibited the EGF-induced cell invasion in cultured melanoma cells .. 89

5.2.4 Molecular docking for the binding of AT-II to EGFR 92

5.3 Discussion and conclusion ... 93

CHAPTER 6 Involvement of the TLR4/STAT3 signaling pathway in the antimelanoma effects of atractylenolide II ... 94

6.1 Abstract ... 95

6.2 Results ... 96

6.2.1 Establishment of the TLR4/STAT3 pathway in melanoma 96

6.2.2 AT-II competed with LPS in binding to TLR4 and inhibited LPS-induced cell invasion and STAT3 activation in melanoma cells 107

6.2.3 Constitutive activation of TLR4/STAT3 signaling diminished the antimelanoma effects of AT-II .. 114

6.3 Discussion and conclusion ... 120
CHAPTER 7 General discussion, Conclusion, Significance of this study and Future plans ... 124

7.1 General discussion and conclusion ... 125

7.2 Significance of this study .. 130

7.3 Future plans .. 131

7.3.1 Determine if AT-II inhibits melanoma metastasis via suppressing TLR4/STAT3 signaling in mice .. 131

7.3.2 Study if AT-II overcomes the acquired resistance of melanoma cells to BRAF and MEK inhibitors ... 132

7.3.3 Comprehensively explore molecular signaling pathways involved in the antimalanoma effects of AT-II ... 134

7.3.3.1 Verify the results obtained from the Phospho-RTK array assays and determine the roles of the altered RTKs in AT-II-exerted antimalanoma effects .. 134

7.3.3.2 Verify the results obtained from RNA-sequencing (RNA-Seq) and determine the roles of the altered genes in AT-II-exerted antimalanoma effects .. 136

7.3.4 Further studies on the TLR4/STAT3 signaling pathway in melanoma 140

7.3.5 Further conduct preclinical studies toward developing AT-II as an antimalanoma agent .. 141

REFERENCES .. 142

CURRICULUM VITAE .. 170

PUBLICATIONS .. 170